
Analyzing the AIR Language: A Semantic Web
(Production) Rule Language ?

Ankesh Khandelwal1, Jie Bao1, Lalana Kagal2, Ian Jacobi2, Li Ding1, and
James Hendler1

1 Rensselaer Polytechnic Institute
Troy, NY 12180

{ankesh, baojie, dingl, hendler}@cs.rpi.edu
2 Massachusetts Institute of Technology

Cambridge, MA 02139
{lkagal, jacobi}@csail.mit.edu

Abstract. The Accountability In RDF (AIR) language is an N3-based,
Semantic Web production rule language that supports nested activation
of rules, negation, closed world reasoning, scoped contextualized reason-
ing, and explanation of inferred facts. Each AIR rule has unique identifier
(typically an HTTP URI) that supports reuse of rule. In this paper we
analyze the semantics of AIR language by: i) giving the declarative se-
mantics that support the reasoning algorithm, ii) providing complexity
of AIR inference; and iii) evaluating the expressiveness of language by
encoding Logic Programs of different expressivities in AIR.

1 Introduction

AIR was developed as an extension to N3Logic [4] to support accountable pri-
vacy protection in Web-based information systems [11]. While N3Logic supports
scoped contextualized reasoning (SCR), nested graphs, and built-in functions,
AIR additionally supports rule reuse, rule nesting and explanation of rule-based
inference. AIR rules are encoded in N31, which extends the expressiveness of
RDF with (i) the ability to use graphs as literal values, (ii) universal or ex-
istential quantification of variables in a graph and (iii) built-in functions and
operators represented as RDF properties.

AIR is designed to provide detailed explanations for actions performed by
AIR reasoner. AIR permits natural language descriptions to be added to ac-
tions, so that when an action is performed the description is included in the
justification, by the reasoner. Since justifications can potentially reveal sensi-
tive information from the knowledge base or expose bias in the rules, AIR also
provides ways to customize explanations, e.g. hiding actions of certain rules.

? This work was supported in part by NSF Cybertrust award CNS-0831442, IARPA
award FA8750-07-2-0031, AFOSR award FA9550-09-1-0152, and support to RPI
from the Information Technology Alliance in Network and Information Science by
U.S. ARL and the U.K. MoD under Agreement Number W911NF-06-3-0001

1 http://www.w3.org/DesignIssues/Notation3.html

AIR rules have unique IDs (IRIs), which enables the rules to be part of the
linked data cloud and reused by other rule definitions. Furthermore, AIR rules
can be nested. These features are natural to model real-world rules and laws
where conditions are often split into sequentially-activated rules, and rules are
frequently reused.

AIR supports rule definitions in which Web resources, such as triple stores
with SPARQL [18] end-points, can be objectively checked for patterns. Some-
times the data has an associated intensional component, defined through rules.
For complete access to the data, AIR supports inclusion of certain inferences
without allowing the rules in the intensional component to be applied to the en-
tire input data. SCR is important for a Web rule languages because information
on the Web is often assumed to be incomplete, and its correctness is subject to
the trustworthiness of the source.

There are many rule languages and rule systems; some are more advanced
while others are at prototypical levels. Liang et. al. give a nice overview of
popular, and often advanced, rule systems in [15]. Examples of rule languages
include N3Logic, NG [20], SILK [8], and SWRL [10], while some rule engines
include Jess2, Jena3, and XSB4. These languages and systems have different
levels of expressiveness and features.

Networked Graphs (NGs) supports the well-founded (WF) negation, XSB
supports Negation as Failure (NAF), and Jess, a production rule system, sup-
ports non-logical negation. SILK supports WF negation, as well as classical
negation. SWRL and Jena do not support negation. In comparison, N3Logic
supports monotonic negation, and AIR supports non-monotonic negation, which
is different from negation accepted by the systems above.

Rule Interchange Format (RIF) [14] has two major dialects – the Framework
for Logic Dialects (FLD) and the Production Rule Dialect (PRD). Unlike PRD,
actions in AIR cannot modify or remove facts, but they can add new production
rules. FLD is an extensible framework for rule-based languages, and includes the
Basic Logic Dialect (BLD), which corresponds to the definite Horn rules with
equality and standard first-order logic semantics. AIR is neither more nor less
expressive than BLD. Unlike BLD, function symbols are not supported in AIR,
whereas AIR supports negation. SWRL is a function-free rule language limited
to binary and unary predicates, and all its features, barring different-from, are
covered by BLD. AIR is as expressive as SWRL, and also supports negation.

OPS/YES [21] extends the OPS5 [7] production rule system with many fea-
tures including incremental rule addition, which allows matching in the actions.
AIR has a similar notion of rule nesting. Other than AIR, of the systems men-
tioned above, only Jena supports (partially) nesting of rules.

In SPARQL, query patterns can be restricted to selective named graphs, and
as a result NGs naturally supports SCR. Other than N3Logic, AIR, and NGs,
SILK also supports SCR.

2 http://www.jessrules.com/
3 http://jena.sourceforge.net/
4 http://xsb.sourceforge.net/

The Ontonova system [1] provides natural language explanation of proof
trees for conclusions by the Ontobroker5 through meta-inferencing. A similar
mechanism for generating proofs for defeasible reasoning system DR-DEVICE
is described in [3]. In contrast, the explanations for conclusions in AIR are gen-
erated by the reasoner itself, and the justification can be declaratively modified
by changing rule definitions.

AIR’s focus on explanation generation for Web reasoning makes it unique.
Other distinguishing features include AIR’s ability to treat AIR rules as part of
linked data and the ability to match patterns against remote triple stores.

While AIR has a production rule syntax, it is limited to assertions of facts,
and addition of rules. Neither can facts be removed from the current state of the
world nor any procedural attachments may be called. Therefore, we can define
its declarative semantics. In this work we define the model-theoretic semantics
of AIR-programs, by defining the translation of an arbitrary AIR-program to a
semantically equivalent stratified Logic Program (LP).

There has been an earlier work on translating Jess to and from Situated
Ordinary LP (SOLP)6 and Situated Courteous LP (SCLP) [9], showing interop-
erability of the two rule languages. However, Jess and AIR are very different rule
languages. Jess, unlike AIR, supports procedural attachments and with certain
restrictions on its features has been shown to support (stratified) NAF [9]. Not
only is the notion of nesting of rules absent from Jess, AIR’s negation is different
from NAF. The authors are not aware of any other related works.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the AIR language and reasoning. In section 3, we define a new class
of stratified LP - Positively Stratified Negatively Hierarchical LP (PSNHLP). In
section 4, we define the declarative semantics, and provide the data and program
complexities of AIR programs. In section 5, we show how LP rules and fairly
expressive LPs, such as PSNHLP, can be encoded in AIR. We conclude in section
6 with a summary and discussion on future work.

There is a longer version of the paper [13]7, that includes review of standard
terminologies used in Logic Programming, proofs of all the claims, and detailed
comparison of AIR with other rule systems.

2 AIR Overview

The AIR production rule system has two components- the rule language and
the rule engine (reasoner). The reasoner computes the closure, AIR-closure,
for given facts, in N3, with respect to given AIR-program. An AIR-program
contains one or more AIR-rules. The closure contains the initial facts and all the
facts that can be deduced from it using the given rules. We will review the AIR

5 http://ontobroker.semanticweb.org/
6 http://sweetrules.projects.semwebcentral.org/sweetrules-overview-presentation-

2005-04-24-v3.pdf
7 http://tw.rpi.edu/proj/tami/AIR Language Formalization

A. RULE SET
m1 ≥ 0, m2 > 0
@forAll < u var1 >, . . . , < u varm1 > .

<setid> a air:RuleSet ;
air:rule < ruleid1 >, . . . , < ruleidm2

> .

B. RULE
n1, n2, n3, n4 ≥ 0, n3 + n4 > 0
<ruleid> a air:BeliefRule ; # alternatively air:HiddenRule, air:EllipsedRule

air:if { @forSome < e var1 >, . . . , < e varn1 > .
s1 < p1 > o1 .
. . .
sn2 < pn2 > on2 . } ;

air:then < t action1 >, . . . , < t actionn3
> ;

air:else < e action1 >, . . . , < e actionn4
> .

C. ACTIVATING NEW RULE
<action> air:description (list of var and str) ;

air:rule < ruleid > .

D. ASSERTING A GRAPH PATTERN
n > 0
<action> air:description (list of var and str) ;

air:assert {s1 < p1 > o1 .
. . .
sn < pn > on . } .

Fig. 1. Template for defining AIR-program

language, and introduce the algorithm for computing the closure in sections 2.1
and 2.2. The details about AIR justification are available at [12].

2.1 AIR Language

AIR rules are defined using following properties: air:if, air:then, air:else,
air:description, air:rule and air:assert, according to the AIR abstract
syntax8. A template for declaring an AIR-program is shown in Figure 1. This
template will be used in the later sections. When we refer to s and o related by
p1.p2 we mean that s p1 [p2 o] holds.

The rules are of the form air:if condition; air:then then-actions;
air:else else-actions. The condition is specified as a graph pattern, similar
to the Basic Graph Pattern of SPARQL queries, which may be pattern matched
against N3 graphs. Whenever the condition matches the current state of the
world, i.e. the facts known or inferred so far, variables may acquire bindings and
all the then-actions are fired. Otherwise all the else-actions are fired.

The rules are grouped under rule-sets. The rules nested directly under the
RuleSet are referred to as the top rules of the rule-set. A rule (child rule)
nested under another rule (parent rule) via air:then.air:rule is said to be
positively nested and a rule nested via air:else.air:rule is said to be nega-
tively nested. A chain of rules is defined as a sequence of rules such that every

8 http://tw.rpi.edu/proj/tami/AIR Abstract Syntax

@prefix air:<http://dig.csail.mit.edu/TAMI/2007/amord/air#>.
@prefix conf:<http://www.conf.org/ontology#>.
@prefix pol:<http://www.conf.org/policies/publication#>.
@prefix:<http://www.conf.org/policies/publication#>.

pol:PubInProcPolicy a air:RuleSet ;
air:rule pol:CheckPub .

@forAll :PUBL .
pol:CheckPub a air:BeliefRule ;

air:if { @forSome :PROC . <http://www.conf.org> conf:hasProceedings :PROC .
:PROC conf:hasPaper :PUBL . } ;

air:then [air:description (:PUBL " published in this conference") ;
air:rule pol:ChkNonCompl],

[air:rule pol:CheckAuth], [air:rule pol:CheckExempt].

pol:ChkNonCompl a air:BeliefRule ;
air:if { :PUBL air:compliant-with pol:PubInProcPolicy . } ;
air:else [air:description ("the publication of " :PUBL " is questionable as

it did not meet any of the two criteria") ;
air:assert { :PUBL air:non-compliant-with pol:PubInProcPolicy }] .

@forAll :AUTH .
pol:CheckAuth a air:BeliefRule ;

air:if {:PUBL conf:hasAuthor :AUTH.<http://www.conf.org> conf:registeredBy :AUTH.};
air:then [air:description ("Author," :AUTH " registered for the conference");

air:assert { :PUBL air:compliant-with pol:PubInProcPolicy }] .

@forAll :REASON .
pol:CheckExempt a air:BeliefRule ;

air:if { @forSome :COCHAIR, :EXEMPTION .
:COCHAIR a conf:Co-Chair . :PUBL conf:hasFirstAuthor :AUTH .
:EXEMPTION a conf:PublicationExemption ; conf:exemptedBy :COCHAIR ;

conf:exemptee :AUTH ; conf:reason :REASON . } ;
air:then [air:description ("the first author " :AUTH " was exempted by one of the

cochairs, because " :REASON);
air:assert { :PUBL air:compliant-with pol:PubInProcPolicy }] .

Fig. 2. Example AIR-program, describing the publication policy

rule barring the first in the chain is nested under the preceding rule. t actionis
and e actionis, in Figure 1, are the then-actions and else-actions, respec-
tively. Together they are referred to as actions. The actions can be annotated
with natural language description through the air:description property. Note
that the description can be defined using variables.

The existentially quantified variables may be declared within the condition.
The universally quantified variables are declared outside of the rule. The scope
of existentially quantified variable is the condition where it’s declared, and of
universally quantified variable is any rule chain with the first rule as a top rule.

The graph pattern asserted in the action is declared using air:assert, and
the nested rule is declared using air:rule property. The asserted graph patterns
cannot contain blank nodes or existentially quantified variables. When the nested
rule is activated, an instance of the rule with known variable bindings substituted
is created. When a rule with an air:else property is activated, its condition
cannot contain unbounded universally quantified variables.

Traditionally, rule languages have been designed assuming that all
rules will apply on all input data. However, this is not desirable

A. Data Structures
rule = (ruleid, condition, success, then-actions,
else-actions)
then(else)-actions = list of child rules to be
activated and graphs to be asserted
RB = set of active rules
FB = set of facts
SRF = queue of (rule, bindings) tuples
FRF = queue of rules

B. COMP-CLOSURE
INPUT : AIR-program, facts
OUTPUT : Closure of facts w.r.t. the AIR-
program in FB
1. Initialize the data-structures
1.1. FB = facts
1.2. RB = φ
1.3. SRF = empty queue
1.4. FRF = empty queue
1.5. FRF’ = empty queue
2. For each top rule, of all RuleSets in AIR-
program
2.1. add-to-rulebase(R)
3. while SRF and FRF is non empty
3.1. while SRF is non empty
3.1.1. f = SRF.dequeue(), i.e. remove first queue
element and assign it to f
3.1.2. rule-fire(f.rule.then-actions, f.bindings)
3.2. while FRF is non empty
3.2.1. f = FRF.dequeue()
3.2.2. if f.rule.success is false
3.2.2.1. FRF’.enqueue(f)
3.3. while FRF’ is non empty
3.3.1. f = FRF’.dequeue()
3.3.2. rule-fire(f.rule.else-action, {})

C. RULE-FIRE
INPUT : actions, bindings bndgs
OUTPUT : updated RB and FB
1. for action in actions :
1.1. substitute all variables in action which have
bindings with bound values from bndgs
1.2. if action is a rule
1.2.1. add-to-rulebase(action)
1.3. if action is a graph
1.3.1. add-to-factbase(action)

D. ADD-TO-RULEBASE
INPUT : rule
OUTPUT : updated RB and (SRF or FRF)
1. if rule not in RB
1.1. add rule to RB
1.2. R.success = False
1.3. pattern match rule.condition against FB
1.4. If rule.condition matched a sub-graph
1.4.1. R.success = True
1.4.2. for each sub-graph that matched
rule.condition
1.4.2.1. SRF.enqueue((rule, bindings))
1.5. If rule.condition did not match any sub-
graph
1.5.1. FRF.enqueue(rule)

E. ADD-TO-FACTBASE
INPUT : graph (grounded graph pattern)
OUTPUT : updated FB, RB and SRF
1. let graph’ = graph \ FB
2. if graph′ 6= φ
2.1. add triples in graph’ to FB
2.2. for each rule in RB
2.2.1. pattern match rule.condition against FB
2.2.2. If rule.condition matched a sub-graph g
s.t. that g ∩ graph’ 6= φ
2.2.2.1. rule.success = True
2.2.2.2. for each sub-graph g that matches the
rule.condition and g ∩ graph’ 6= φ
2.2.2.2.1. SRF.enqueue((rule, bindings))

Fig. 3. The COMP-CLOSURE algorithm, and related data-structures and
algorithms.

for a web rule language [4, 17], and therefore AIR supports SCR.
The matching of a condition pattern can be scoped to web docu-
ments, RDF-stores with SPARQL end-points, or to the AIR-closure of
some facts and AIR-programs using the log:semantics.log:includes,
sparql:queryEndPoints.log:semantics.log:includes and air:justifies

built-ins respectively. Note that by using air:justifies, a subset of rules can
be applied to a subset of data, if desired, without risking the application of those
rules to the entire input data. In addition to the built-ins for scoped reasoning,
AIR supports most of the N3Logic built-ins9 for cryptographic, math, string,
list and time functions.

Figure 2 shows an example AIR-program. It expresses the conference policy:
any paper accepted in the conference should be published in the proceedings

9 http://www.w3.org/2000/10/swap/doc/CwmBuiltins

@prefix colog:<http://www.conf.org/log#>. @prefix conf:<http://www.conf.org/ontology#>.
<http://www.conf.org> conf:hasProceedings colog:proc .
colog:proc conf:hasPaper colog:pub1 .
colog:pub1 conf:hasAuthor colog:auth1 .
<http://www.conf.org> conf:registeredBy colog:auth1 .

Fig. 4. Example of input facts: sub-graph from log of conference activities.

only if one of the authors has presented it in the conference (pol:CheckAuth),
or the first author has received an exemption from one of the co-chairs
(pol:CheckExempt). The former condition is interpreted in practice by checking
to see if one of the co-authors has registered for the conference. It is assumed that
the conference activities are logged using the same vocabulary as that used in the
rules. pol:CheckPub is the only top rule, and the three rules, pol:ChkNonCompl,
pol:CheckAuth, and pol:CheckExempt are its child rules.

2.2 AIR Reasoning (The Procedural Semantics)

The AIR reasoner employs a RETE [6] based forward-chaining approach to com-
pute the AIR-closure. Figure 3 describes the COMP-CLOSURE algorithm used
for computing the AIR-closure. The data structures and algorithms described
here are abstractions of the actual implementation [12]. For instance FB (Fact
Base), which is shown to be a set of facts, is actually an efficiently indexed triple
store, and RB (Rules Base), the set of active rules, is compiled into the RETE
framework. The abstraction is sufficient for analyzing the language.

One cycle of step 3 of COMP-CLOSURE is referred to as a stage, i.e.
steps 3.1 to 3.3 (3.3.1 and 3.3.2 included) constitute one stage of the algorithm.
Furthermore, step 3.1 is referred to as a positive stage, denoted by stage+ and
steps 3.2 and 3.3 constitute a negative stage, denoted by stage−. We will be using
stagei, stage+

i and stage−i to refer to ith stage, stage+ and stage−, respectively.

In any given stage, successful rules are given priority over failed rules, and
their then-actions are effected in stage+ before failed rules fire. When all suc-
cessful rules have fired, the world is temporarily closed and the else-actions
of all the failed rules are fired in stage− with the belief that the conditions of
all the failed rules are false. AIR reasoning enters the next stage once the failed
rules have all fired. The COMP-CLOSURE algorithm computes the next stage
until the fixpoint is reached, i.e. when both the SRF and FRF are empty.

Consider the input facts in Figure 4 and the example AIR-program
from Figure 2. The AIR-closure contains one additional triple colog:pub1

air:compliant-with pol:PubInProcPolicy. In order to compute the clo-
sure, FB is initialized by triples in the input and pol:CheckPub is added
to the RB. When the rule is added, its condition matches and it is added
to the SRF with pol:PUBL bound to colog:pub1. When it fires, the three
child rules are added to the RB. Only pol:CheckAuth succeeds and other
rules are added to the FRF. The pol:CheckAuth is added to the SRF with
:AUTH bound to colog:auth1. It fires next, and asserts the triple colog:publ1

air:compliant-with pol:PubInProcPolicy. When that triple is added, it sat-
isfies the pol:ChkNonCompl’s condition and the rule’s success attribute is set
to true. SRF is now empty and pol:ChkNonCompl is removed from FRF.
pol:CheckExempt is then added to FRF. However, it doesn’t have an air:else

property. The fixpoint is reached at the end of first stage.

3 Positively Stratified Negatively Hierarchical Logic
Programs

We will review definitions of Ground(R), the TP operator and the perfect model
semantics for stratified LPs, before defining PSNHLPs. Ground(R) refers to the
set of all possible ground instances of R, with respect to given universe of con-
stant symbols U , whereR is a rule or an LP. TP is the one-step induction operator
(or immediate consequence operator) [2] associated with an LP P , defined by:

TP (I) = {A0 | P contains a rule whose instantiation is A0 ← A1, . . . , An
such that I |= A1& . . .&An}

where I is the given set of atoms that are true. The powers of TP are defined

as : T ↑0P (I) = I, T ↑n+1
P (I) = TP (T ↑nP (I)) ∪ T ↑nP (I), T ↑ωP (I) =

∞⋃
n=0

T ↑nP (I)

The semantics of a (locally) stratified LP, P , is defined in terms of its perfect
model, which we refer to by PM(P). P entails a ground atom A iff A belongs
to PM(P). Let P1 ∪ . . . ∪ Pn be the (local) stratification of P (Ground(P)). We
can choose a stratification and assignment of levels to predicates such that the
rule A ← L1, . . . , Lm in P is in Pi iff the level assigned to A is i, and we
will assume that to be the case in rest of the paper. PM(P) = Mn [19], which is

defined by : M1 = T ↑ωP1
(φ), M2 = T ↑ωP2

(M1), . . . Mn = T ↑ωPn
(Mn−1)

When a rule contains a negative literal in the body, we will refer it as nega-
tive rule. All other rules are thus positive rules. An LP P is PSNHLP if there
is an assignment of ordinal levels to predicates such that whenever a predicate
appears in the body (negatively or positively) of a negative rule, the predicate in
the head of that rule is of strictly higher level, and whenever a predicate appears
in the body of a positive rule, the predicate in the head has at least that level.
Similarly, an LP P is locally PSNHLP if such an assignment of ordinal levels is
possible over ground atoms for Ground(P). Every hierarchical LP is PSNHLP,
and every PSNHLP is stratified LP. This doesn’t hold in opposite direction.

Let P1 ∪ . . . ∪ Pn be the stratification of a PSNHLP P , and let P+
i ∪ P

−
i is

the partition of Pi such that a rule from Pi is in P+
i if it is positive and in P−i

otherwise. Then, the PSNH-stratification of P is defined as P = P+
1 ∪ P

−
1 ∪

. . . ∪ P+
n ∪ P−n . The predicates in the body of a rule in P−i have levels strictly

smaller than i. The PM(P) = Mn, where Mn is defined by:

M1 = T ↑ωP1
(φ),

M ′2 = T ↑1
P−2

(M1), M2 = T ↑ω
P+

2

(M ′2),

. . .
M ′n = T ↑1

P−n
(Mn−1), Mn = T ↑ω

P+
n

(M ′n)

such that M1 = T ↑ωP1
(φ), and Mi = T ↑ωPi

(Mi−1) for i > 1. The former holds

because P1 = P+
1 (i.e. P−1 = φ). The latter follows from following claim.

Claim 1: T ↑ωPi
(Mi−1) = T ↑ω

P+
i

(T ↑1
P−i

(Mi−1))

4 Declarative Semantics

The declarative semantics of AIR-program can be defined in terms of a seman-
tically equivalent PSNHLP. We will first define τ , that translates AIR-program
∆ to LP ℘. We will then show that ℘ is PSNHLP and that the AIR-closure of
∆ and input facts κ, mapped as ground facts in ℘, is same as PM(℘). ℘ contains
rules for predicates t, ts, active rule and cond, with following meanings :

– t(s, p, o) represents N3 triple {s p o}.
– ts(s, p, o, c, n) represents true N3 triple {s p o}, in the nth stage of

reasoning, in context c.
– active rule(ruleid, ?v1, . . ., ?vm, c, n) represents active AIR-rule,

ruleid, in the nth stage, in context c. The exact instance of the rule is de-
termined by the partial bindings of ?vi’s. ?vi’s are the universally quantified
variables used in the chain of rules to which ruleid belongs. For example,
the rule pol:CheckAuth has two variables ?PUBL and ?AUTH.
If, for example, active rule(pol:CheckAuth, colog:pub1, ?AUTH, c,

1) atom is true, then an instance of the rule pol:CheckAuth is active at
the 1st stage with ?PUBL bound to colog:pub1 in the context c. Here ?AUTH

is unbound and can be bound by any constant from U.
– cond(ruleid, ?cv1, . . ., ?cvm, c, n) represents a satisfied condition

of the AIR-rule, ruleid, in the nth stage, in context c. The ?cvi’s are
universally quantified variables occurring in the rule’s condition. The
VAR IN COND function returns all these variables for given rule. If, for ex-
ample, cond(pol:CheckAuth, colog:pub1, colog:auth1, c, 1) atom is
true then the condition of pol:CheckAuth rule is true in 1st stage, in con-
text c, when ?PUBL and ?AUTH are bound to colog:pub1 and colog:auth1

respectively.
– succ (successor) and = predicates are used with their usual meanings.

The context may be defined by a collection of N3 and/or AIR-program sources,
and is identified with an ID. We may use unique predicate symbols to distinguish
active rule predicates for same rule in different rule chains.

τ(∆) is defined by conjunction of the rules returned from TRANS(setid)

and TRANS(ruleid), for every rule set and production rule in ∆, respectively.
Figure 5 gives the definition of TRANS(ele, ?n) function, for ele’s in a built-
in-free AIR-program. The eles are described as per the template in Figure 1,
and ?n is optional argument.

A. TRANS(setid), where setid is a RULE-SET
1. ruleset(setid, c) .
2. for i in 1 to m2

active rule(ruleidi, ?u var1, . . ., ?u varm1 , ?c, 1) ← ruleset(setid, ?c) .
B. TRANS(ruleid), where ruleid is a RULE
3. cond(ruleid, VAR IN COND(ruleid), ?c, ?n) ← ts(MAP(s1), MAP(p1), MAP(o1),

?c, ?n), . . ., ts(MAP(sn2), MAP(pn2), MAP(on2), ?c, ?n), ?n ≤ UB .
4. for i in 1 to n3

TRANS(t actioni, ?n) ← active rule(ruleid, ?u var1, . . ., ?u varm1 , ?c, ?n),
cond(ruleid, VAR IN COND(ruleid), ?c, ?n), ?n ≤ UB .

5. for i in 1 to n4

TRANS(e actioni, ?m) ← active rule(ruleid, ?u var1, . . ., ?u varm1 , ?c, ?n),
not(cond(ruleid, VAR IN COND(ruleid), ?c, ?n)), succ(?m, ?n), ?n≤UB.

C. TRANS(action, ?n), where action is ACTIVATING NEW RULE
6. active rule(ruleid, ?u var1, . . ., ?u varm1 , ?c, ?n)

D. TRANS(action, ?n), where action is ASSERTING A GRAPH PATTERN
7. ts(MAP(s1),MAP(p1),MAP(o1), ?c, ?n), . . ., ts(MAP(sn),MAP(pn),MAP(on),?c,?n)

E. TRANS({s p o}), where {s p o} is INPUT FACT
8. ts(s, p, o, c, 1) .

Fig. 5. TRANS(ele, ?n) definition, where ele is defined according to the template
in Figure 1

The MAP(val) function maps val to ?val or val depending on whether
val is declared as a variable or not. UB is the upper bound on number of stages
required for computing the fix-point for given AIR-program and initial facts.
UB is finite because assertions can use only fixed IRIs (i.e. no blank nodes are
allowed in the asserted graph), and every fact and rule instance is asserted at
most once. UB is polynomial in the size of input facts and the maximum depth
of nesting in input AIR-program [13]. ?n ≤ UB ensures that the closure for ℘ is
finite. Additional rules that hold in every ℘ are shown in Figure 6.

The triples in κ are translated as facts into ℘, in translation step (TS) 8.
The triples asserted and the rules activated when the rule condition is satisfied
are true from the same stage (TS-4), whereas they are true only from next stage
when the rule condition failed (TS-5). The definition in Figure 5 can be extended
to handle the built-ins for SCR, namely air:justifies, log:includes, and
log:notIncludes [13].

For example, TRANS(pol:ChkNonCompl) yields following rules :

– ts(?PUBL , air:non-compliant-with, pol:PubInProcPolicy, ?c, ?m) ←
active rule(pol:ChkNonCompl, ?PUBL, ?c, ?n), succ(?n, ?m), ?n ≤ UB,
not(cond(pol:ChkNonCompl, ?PUBL, ?c, ?n)) .

– cond(pol:ChkNonCompl, ?PUBL, ?c, ?n) ←
ts(?PUBL,air:compliant-with, pol:PubInProcPolicy, ?c, ?n) .

9. active rule(?x1,. . .,?xm, ?c, ?n)←active rule(?x1,. . .,?xm, ?c,?m), ?m≤?n, ?n≤UB.
10. ts(?s, ?p, ?o, ?c, ?n) ← ts(?s, ?p, ?o, ?c, ?m), ?m ≤ ?n, ?n ≤ UB .
11. t(?s, ?p, ?o) ← ts(?s, ?p, ?o, c, ?n), ?n ≤ UB .

Fig. 6. Additional rules that hold in every ℘.

Claim 2: ℘ is locally PSNHLP.
Proof. Let the assignment of levels to ground atoms for all predicates except t,
succ, and = be equal to the value of their last term. For example ts(s, p, o,

c, n) is assigned level n. Let predicates t, succ, and = be assigned levels UB, 1,
and 1, respectively. This assignment gives a local PSNH-stratification of ℘. ut

We can replace the atom ts(s, p, o, c, n) by tsn(s, p, o, c). We can
do so for other atoms with ts, active rule and cond predicate symbols, by
introducing tsn , active rulen and condn predicate symbols, for all n ≤ UB.
Although the TS-9, TS-10 and TS-11 rules will expand O(UB2) times and the
rest O(UB) times, changes to TSs in Figures 5 and 6 are straightforward. Then
the resulting ℘, say ℘′, is a PSNHLP as against being just locally PSNHLP.

Let, Ground(℘) = ℘+
1 ∪℘

−
1 ∪ . . .∪℘

+
UB∪℘

−
UB, be the local PSNH-stratification

of ℘. We can show semantic equivalence, denoted by ∼, between the steps
for computation of PM(℘) and the AIR-closure of ∆ and κ. T ∼ s is used to
denote the direct correspondence between extensions of predicates active rule

and ts, inferred after the application of T operator during the computation of
PM(℘), and the rules activated and triples asserted after completion of stage s
of COMP-CLOSURE execution.

Claim 3: T ↑ω
℘+

1

∼ stage+
1 . For i > 1, T ↑1

℘−i
∼ stage−i−1 and T ↑ω

℘+
i

∼ stage+
i .

Let ℵ be the N3 graph obtained by taking the N3 representation of exten-
sions of the predicate t in PM(℘).

Claim 4: The AIR-closure of ∆ and κ is same as ℵ.
Proof. From claim 3 it follows that for all i ≥ 1, Mi ∩ ℵ and the triples in FB

after the completion of stage+
i are the same. Since the fix-point is reached by

the end of UBth stage, MUB ∩ ℵ and the triples in the AIR-closure of ∆ and κ
are the same. However, PM(℘) = MUB . ut

The above results (claims 3 and 4) hold for ℘′ as well [13]. We have seen
that ℘ can be viewed as a stratified LP (PSNHLP), and we have shown above
the direct correspondence between the steps for computing PM(℘) (equivalently
PM(℘′)) and those for computing AIR-closure of ∆ and κ. Therefore, com-
plexity results for AIR follow from those for stratified programs [5]. The data
complexity is the complexity of computing the model when the rules-base is
fixed and the fact-base is an input. The program complexity is the complexity
of computing the model when the fact-base is fixed but the rules-base is an input.

Claim 5: AIR-closure computation is PTime-complete in data-complexity and
ExpTime-complete in program-complexity.

@forAll :X, :Y .
:r a air:BeliefRule ;

air:if { :X :conn :Y .} ;
air:then [air:rule :b1], [air:rule :b2] ;
air:then [air:rule :rAux] .

:rAux a air:BeliefRule ;
air:if { :X :aux :Y } ;
air:else [air:assert { :X :good-conn :Y . }] .

:b1 a air:BeliefRule ;
air:if { :X a :Infected . } ;
air:then [air:assert { :X :aux :Y }] .

:b2 a air:BeliefRule ;
air:if { :Y a :Infected . } ;
air:then [air:assert { :X :aux :Y }] .

Fig. 7. Rewriting an example LP rule, in AIR : Connection between X and Y is
good if both X and Y are not infected.

5 AIR and Logic Programming

Logic programming is a very popular declarative method of knowledge represen-
tation and programming. Like LPs, we define rules in AIR. However, AIR rules
have different semantics from the LP rules, and they can be nested under one
another. Different nesting of the same rules may yield (semantically) different
AIR programs. In this section we investigate logic programming through AIR.

An LP rule is said to be safe if every variable occurring in the head of the rule
or in a negative literal in the body also occurs in a positive literal in the body.
We can encode any safe LP rule A ← A1, . . . , An, not(B1), . . ., not(Bm)
in AIR by rewriting it as:

A← A1, . . . , An, not(Aux) .

Aux← B1 .

. . .
Aux← Bm .

Aux is a new predicate and its arguments are all the variable terms that appear in
the literals of the rule’s body. For example following rule : good-conn(?X, ?Y)

← conn(?X, ?Y), not(infected(?X)), not(infected(?Y))., can be ex-
pressed as AIR rule as shown in Figure 7. Note that the predicate symbol S
is translated to :S, and variable symbol ?S is translated to :S, as quantified by
an @forAll directive. We have translated binary predicates to property asser-
tions, and the unary predicate to type assertion. Higher arity N-ary predicate
p(t1, . . . , tn) can be encoded in N3 as {(t1 . . . tn) p true}.

The nesting of rules impacts the order in which the rules are fired, and they
may be nested properly to get the desired semantics. Since for Positive LPs
(PLPs) the order in which the rules fire does not matter, the rules in PLP can
be translated into AIR and included as top rules in an AIR program to get a
semantically equivalent AIR program. When a logic language (e.g., LP) can be
encoded in AIR with unchanged semantics, we will say that it can be losslessly
rewritten into AIR.

We have seen that PLPs can be losslessly rewritten into AIR. OWL 2 RL10

inference rules are all positive, and therefore they can be encoded in AIR and

10 http://www.w3.org/TR/owl2-profiles/#OWL 2 RL

:rs a air:RuleSet ;

air:rule : r+11
, . . . , : r+1n1

;

air:rule : r−21
, . . . , : r−2

n
−
2

;

GET RULE PROPERTY(2) .

, where GET RULE PROPERTY(j) function is defined recursively as:
when j < n:

air:rule [
air:if { owl:Thing rdfs:subClassOf owl:Nothing . } ;

air:else [air:rule : r+j1
], . . ., [air:rule : r+j

n
+
j

] ;

air:else [air:rule : r−j+11
], . . ., [air:rule : r−j+1

n
−
j+1

] ;

air:else [GET RULE PROPERTY(j + 1)]]
when j = n :

air:rule [
air:if { owl:Thing rdfs:subClassOf owl:Nothing . } ;

air:else [air:rule : r+j1
], . . ., [air:rule : r+j

n
+
j

]]

Fig. 8. Rewriting PSNHLP in AIR.

used concurrently with other AIR rules. Next we show that PSNHLPs can be
losslessly rewritten into AIR.

Claim 6: PSNHLPs can be losslessly rewritten into AIR.
Proof. Let P = P+

1 ∪ P
−
1 ∪ . . . ∪ P+

n ∪ P−n be the PSNH-stratification of the
PSNHLP P , and each P−i has n−i rules and P+

i has n+
i rules. Let the kth rule

in stratums P+
i and P−i be encoded in AIR with IDs :r+

ik
and :r−ik respectively.

Then the nesting of rules shown in Figure 8 yields a lossless translation of P .
This nesting can be generated programmatically for any PSNHLP P . owl:Thing
rdfs:subClassOf owl:Nothing is a tautologically false statement.

The rules in P−i+1 and P+
i are activated after stagei−1. Since all the ground

facts for predicates of level less than i+ 1 in PM(P) are inferred before stage−i ,
rules in P−i+1 do not fire incorrectly in stage−i . ut

Since non-recursive datalogs are PSNHLPs, they can be losslessly rewritten
into AIR. The same can be said about SPARQL queries.

Claim 7: SPARQL SELECT and CONSTRUCT queries, without the query mod-
ifiers like ORDER BY and LIMIT, can be losslessly rewritten into AIR, and
executed by the AIR reasoner.
Proof sketch. SPARQL SELECT and CONSTRUCT queries, without the query
modifiers, can be translated to a non-recursive Datalog, ΠQ, with NAF under
the answer set semantics [16]. Using claim 6 we can say that ΠQ can be losslessly
rewritten into AIR. ut

We have seen that PSNHLPs can be losslessly rewritten into AIR. However,
more general stratified LPs cannot be translated into AIR. For example, the

following rules cannot be losslessly rewritten into AIR for arbitrary facts of
predicates P, Q, and S:

P(x, z) ← P(x, y), P(y, z), not(Q(x, z)) .
R(x, y) ← S(x, y), not(P(x, y)) .

However, that can be resolved through a simple extension of AIR, whereby
RuleSets can be nested – :rs1 air:hasHigherPriority :rs2 – with the
following meaning: the rules nested under RuleSet :rs2 are activated only
after the fixpoint is reached for the rules under :rs1. Note that the rules
under :rs1 remain active. The corresponding change in reasoning algorithm is
straightforward. This extension has some similarity with salience in Jess.

Claim 8: Stratified LPs can be losslessly rewritten into AIR extended with the
nesting of RuleSets.

6 Conclusions and Future Work

In this paper we have analyzed AIR, a rule language for the Semantic Web. AIR
supports non-monotonic negation, and we have provided a declarative semantics
that supports this negation by translating AIR programs to a specialized class of
(locally) stratified LPs – PSNHLPs. While AIR does not support well-founded
negation and is less expressive than other rule systems, its ability to construct
explanations, declaratively manipulate them, and its support for scoped contex-
tualized reasoning (SCR) make it sufficiently unique and useful for Web rea-
soning. As AIR is a language for the Web, SCR is especially relevant. AIR also
allows for the nesting of rules; this allows for the segmentation of the conditions
of a rule so that only part of them are revealed in the justifications. We have
shown that nesting can also be leveraged to order rules and therefore encode
fairly expressive LPs such as PSNHLP. Stratified LPs can be encoded in AIR
with an incremental modification to AIR. Finally, we have shown that SPARQL
queries may be executed by the AIR reasoner.

We plan to investigate ways to increase the expressiveness of AIR in the
future. This is a twofold task. We have shown that PSNHLP can be encoded in
AIR, but do not think that this is the most expressive LP that can be expressed
in AIR. It may also be possible to investigate an alternative AIR reasoning
algorithm in which actions that fire under the assumption of a failed condition
are retracted when the rule’s conditions match later on. Furthermore, with a well-
defined LP translation of AIR program, it is possible to develop goal-based query
answering mechanisms for these programs. We are also interested in investigating
contextualization more closely.

References

1. J. Angele, E. Moench, S. Staab, and D. Wenke. Ontology-based query and an-
swering in chemistry: Ontonova @ project halo. In Proceedings of the Second
International Semantic Web Conference (ISWC 2003), 2003.

2. K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics. 1990.

3. N. Bassiliades, G. Antoniou, and G. Governatori. Proof explanation in the dr-
device system. In Proceedings of the 1st international conference on Web reasoning
and rule systems (RR 2007), 2007.

4. T. Berners-lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler. N3logic: A logical
framework for the world wide web. Theory Pract. Log. Program., 8(3), 2008.

5. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. In IEEE Conference on Computational Complexity,
1997.

6. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1), September 1982.

7. C. L. Forgy. Ops5 users manual. In Technical Report CMU-CS-81-135, Department
of Computer Science, Carnegie-Mellon University, 1981.

8. B. N. Grosof. Silk: Higher level rules with defaults and semantic scalability. In Pro-
ceedings of the 3rd International Conference on Web Reasoning and Rule Systems
(RR2009), 2009.

9. B. N. Grosof, M. D. Gandhe, and T. W. Finin. Sweetjess: Inferencing in situated
courteous ruleml via translation to and from jess rules. In Proceedings of the ISWC
02 International Workshop on Rule Markup Languages for Business Rules on the
Semantic Web, 2003.

10. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
Swrl: A semantic web rule language combining owl and ruleml. Technical report,
W3C, 2004.

11. L. Kagal, C. Hanson, and D. Weitzner. Using dependency tracking to provide
explanations for policy management. IEEE International Workshop on Policies
for Distributed Systems and Networks, 2008.

12. L. Kagal, I. Jacobi, and A. Khandelwal. Gasping for air - why we need linked
rules and justications on the semantic web. In Under review at the International
Semantic Web Conference (ISWC 2010), 2010.

13. A. Khandelwal, J. Bao, L. Kagal, I. Jacobi, L. Ding, and J. Hendler. Analyzing
the air language: A semantic web rule language. In Technical Report, Department
of Computer Science, Rensselaer Polytechnic Institute, 2010.

14. M. Kifer. Rule interchange format: The framework. In Proceedings of the 2nd
International Conference on Web Reasoning and Rule Systems (RR 2008), 2008.

15. S. Liang, P. Fodor, H. Wan, and M. Kifer. Openrulebench: an analysis of the
performance of rule engines. In Proceedings of the 18th international conference
on World wide web (WWW 2009), 2009.

16. A. Polleres. From sparql to rules (and back). In Proceedings of the 16th interna-
tional conference on World Wide Web (WWW 2007), 2007.

17. A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. In
Proceedings of the 3rd European Semantic Web Conference (ESWC 2006, 2006.

18. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. Technical
report, W3C, 2006.

19. T. C. Przymusinski. On the declarative semantics of deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming. 1988.

20. S. Schenk and S. Staab. Networked graphs: a declarative mechanism for sparql
rules, sparql views and rdf data integration on the web. In Proceeding of the 17th
international conference on World Wide Web (WWW 2008), 2008.

21. M. I. Schor, T. Daly, H. S. Lee, and B. Tibbitts. Advances in rete pattern matching.
In AAAI, 1986.

